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ABSTRACT
S T

/This report forms the user’s guide for Version 1.1 of SOL/NPSOL, a set of Fortran subroutines
designed to minimize an arbitrary smooth function subject to constraints, which may include
simple bounds on the variables, linear constraints and smooth nonlinear constraints. (NPSOL
may also be used for unconstrained, bound-constrained and linearly constrained optimization.)
The user must provide subroutines that define the objective and constraint functions and their
gradients. All matrices are treated as dense, and hence NPSOL is not intended for large sparse
problems.

NPSOL uses a sequential quadratic programming (SQP) algorithm, in which the search direc-
tion is the solution of a quadratic programming (QP) subproblem. The algorithm treats bounds,
linear constraints and nonlinear constraints separately. The Hessian of each QP subproblem
is a positive-definite quasi-Newton approximation to the Hessian of an augmented Lagrangian
function. The steplength at each iteration is required to produce a sufficient decrease in an aug-
mented Lagrangian merit function. Each QP subproblem is solved using a quadratic programming
package with several features that improve the efficiency of an SQP algorithm.

e

tThe package SOL/NPSOL, is available from the Office of Technology Licensing, 105 Encina Hall,
Stanford University, Stanford, California, 94305.

The material contained in this report is based upon research supported by the U.S. Department
of Energy Contract DE-AC03-76SF00326, PA No. DE-AT03-76ER72018; National Science Foun-
dation Grants MCS-7926009 and ECS-8012974; the Officc of Naval Research Grant N00014-75-
C-0267; and the U.S. Army Rescarch Office Contract DAAG29-79-C-0110.
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1. PURPOSE NPSOL/1

1. PURPOSE

SOL/NPSOL is a collection of Fortran subroutines designed tc solve the nonlinear program-
ming problem — the minimization of a smooth nonlinear function subject to a set of constraints
on the variables. The problem is assumed to be stated in the following form:

NP minimize F(z)
ZER"

z
subject to ¢ < {-41.3} < u,
¢(z)

where F(z) is a smooth nonlinear function, A, is a constant matrix, and ¢(z) is a vector of smooth
nonlinear constraint functions. The matrix A, and the vector ¢(z) may be empty. Note that upper
and lower bounds are specified for all the variables and for all the constraints. This form allows
full generality in specifying other types of constraints. In particular, the i-th constraint may
be defined as an equality by setting & = u,. If certain bounds are not present, the associated
elements of £ or u can be set to special values that will be treated as —oo or +oo.

If no nonlinear constraints »re present, it is generally more efficient to use a package specifically
designed for linearly constrained problems. In particular, when F is linear or quadratic, the
LPSOL or QPSOL packages should be used (Gill et al., 1983a); for a general function F with
only linear constraints, the LCSOL package is appropriate (Gill et al., 1983c). If the problem
is large and sparse, the MINOS/AUGMENTED package (Murtagh and Saunders, 1980, 1982)
should be used, since NPSOL treats all matrices as dense.

The user must supply an initial estimate of the solution to NP, and subroutines that define
F(z), ¢(z) and their first derivatives. The level of printed output is controlled by the user (see
the parameter MSGLVL in Section 4).

NPSOL is based on subroutines from Version 3.1 of the SOL/QPSOL quadratic programming
package; the documentation of this version of QPSOL (Gill et al., 1983a) should be consulted in
conjunction with this report. NPSOL contains approximately 9000 lincs of ANSI (1968) Standard
Fortran, of which 47% are comments.
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NPSOL/2 2. DESCRIPTION

2. DESCRIPTION

The method used to solve NP is a sequential quadratic programming (SQP) method. SQP
methods were popularized mainly by Biggs (1972), Han (1976) and Powell (1977); for an overview,
see, e.g., Fletcher (1981), Gill, Murray and Wright (1981) and Powell (1982). Let zo denote the
initial estimate of the solution. During the k-th “major iteration” of NPSOL (k = 0,1,...), a
new estimate is defined by

Te41 = Tk + Ok Pk,

where the vector p; is the solution of a QP subproblem, to be described below. The positive
scalar a; is chosen to produce a sufficient decrease in an augmented Lagrangian merit function
(see Schittkowski, 1981); the procedure that determines a is called the line search.

The QP subproblem that defines py is of the form ‘

1
s s e T aT
QP minimize ¢ p+ap Hp

. P
subject to Z < {-4?} < 4

The vector g in QP is the gradient of F at z;. The matrix H is a positive-definite quasi-Newton
approximation to the Hessian of an augmented Lagrangian function. It is represented as H =
RTR, where R is upper triangular, and is updated after every major iteration.

Let m, denote the number of linear constraints (the number of rows in A4,), and let m,

denote the number of nonlinear constraints (the dimension of ¢(z)). The matrix 4 in QP has
m, + m, rows, and is defined as
Ao
=(1)
An

where 4, is the Jacobian matrix of ¢(z) evaluated at z;. Let £ in NP be partitioned into three
sections: the first n components (denoted by £,), corresponding to the bound constraints; the
next m, components (denoted by ¢,), corresponding to the linear constraints; and the last m,

components (denoted by £), corresponding to the nonlincar constraints. The vector £ in QP is
partitioned in the same way, and is defined as

s =g — Zk, ZL=‘L_£sz, and ZN=£N_ck,

where ¢; is ¢(z) evaluated at z,. The vector @ is defined in an analogous fashion.

In general, solving the subproblem QP for py is itsell an iterative procedure. Ilence, a
“minor iteration” of NPSOL corresponds to an iteration within the QP algorithm. Note that
the functions F(z) and ¢(z) are not evaluated during the solution of the subproblem. The total
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2. DESCRIPTION NPSOL/3

number of function evaluations required to solve a well-behaved problem will usually be similar
to the number of major iterations.

The problem QP is solved using subroutines from the SOL/QPSOL package, which is described
in detail in Gill et al. (1983a), and was specifically designed to be used within an SQP algorithm
for nonlinear programming. In particular, two common difficulties associated with SQP methods
are alleviated by certain features of the QPSOL subroutines.

First, it may happen that the QP subproblem is infeasible, yet feasible points exist with
respect to the nonlinear constraints. (Throughout this report, we assume that “feasibility” is
defined by a set of tolerances provided by the user in the array FEATOL; see Section 4.) The
strategy used by NPSOL to treat an infeasible subproblem is the following. If there is no feasible
point with respect to the bounds and linear constraints of the original problem, the infeasibility is
inherent in the problem, and hence NPSOL terminates. Otherwise, the infeasibility results from
the linearized nonlinear constraints; the least infeasible point is then computed, the appropriate
constraint bounds are (temporarily) relaxed, and a relaxed quadratic program is solved for p;.

Second, it is useful in an SQP algorithm to be able to use the prediction of the active set
from each QP subproblem to solve the next subproblem more efficiently. This benefit is achieved
in NPSOL by a “hot start” feature that allows the initial working set and part of its factorization
to be specified. Within NPSOL, the prediction of the active set from one QP subproblem is used
as the “hot start” estimate of the working set for the next QP. In practice, this means that the
QP subproblems near the solution reach optimality in only one iteration. Furthermore, separate
treatment of linear constraints means that it is usually possible to save work in performing the
factorization of the working set at the beginning of the QP (since the rows of A corresponding to
the linear constraints are unchanged).

The algorithm used in NPSOL will be discussed in a forthcoming report. Details of the
algorithm of QPSOL are given in Gill et al. (1983b).
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NPSOL/4 3. SPECIFICATION

8. SPECIFICATION

SUBROUTINE NPSOL ( ITMAX, MSGLVL, N, £
NCLIN, NCNLN, NCTOTL, NROWA, NROWJ, NROWR, *
BIGBND, EPSAF, ETA, FTOL, E
A, BL, BU, FEATOL, |
CONFUN, OBJFUN, COLD, FEALIN, ORTHOG, -]
INFORM, ITER, ISTATE, B
C, CJAC, CLAMDA, OBJF, OBJGRD, R, X,
IW, LENIW, W, LENW ) ;‘

EXTERNAL CONFUN, OBJFUN 2

LOGICAL COLD, FEALIN, ORTHOG ]

INTEGER ITMAX, MSGLVL, N, NCLIN, NCNLN, NCTOTL,
NROWA, NROWJ, NROWR, INFORM, ITER, LENIW, LENW

INTEGER ISTATE(NCTOTL), IW(LENIW)

REAL BIGBND, EPSAF, ETA, FTOL, OBJF

REAL A(NROWA,N), BL(NCTOTL), BU(NCTOTL), FEATOL(NCTOTL),

C(NROWJ), CJAC(NROWJ,N), CLAMDA(NCTOTL),
OBJGRD(N) , R(NROWR,N), X(N), W(LENW)

Note: Here and elsewhere, the specification of a parameter as REAL should be interpreted as
working precision, which may be DOUBLE PRECISION in some circumstances.
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4. INPUT PARAMITERS NPSOL/S

4. INPUT PARAMETERS

ITMAX

MSGLVL

is an upper bound on the number of major iterations to be performed. Unless the
problem is known to be exceptionally difficult, a sensible initial choice for ITMAX is 50.

indicates the amount of intermediate output desired (see Section 9 for a description of
the printout). All output is written to the file number NOUT (see subroutine MCHPAR in
Section 11). MSGLVL is interpreted as a four-digit number. Its first two digits indicate
the level of intermediate output from the quadratic programming routines; the second
two digits indicate the level of intermediate output from NPSOL. The QP printout
levels are defined in Gill et al. (1983a); if MSGLVL < 100, there is no QP output. When
the last two digits of MSGLVL > 10, each level includes the printout from all lower levels.
The printout corresponding to each value of the last two digits of MSGLVL is defined as
follows:

Value Definition
0 No output.
1 The final solution only.
§ One brief line of output for each major iteration (no printout of the

final solution).

210 The final solution and one brief line of output for each major iteration.

215 'At each iteration, the arrays X and ISTATE, and the indices of the free
variables.

> 20 At each iteration, the nonlinear constraint values (the array C), the
linear constraint values (4,z), and estimates of the Lagrange multi-
pliers.

230 At each iteration, the diagonal elements of the matrix T associated

with the TQ factorizalion of the working set, and the diagonals of the
matrix R (the Cholesky factor of the Hessian approximation).

>80 Debug output from NPSOL.

99 Debug output from the line search.
For example, MSGLVL = 10 will produce a summary of results for each major iteration

and a full printout of the final solution; M"GLVL = 510 will produce the same printout,
as well as a summary of eac: minor (07 .teration.

is the number of variables, i.e., the dimension of X (N must be positive).

-------
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NPSOL/6

NCLIN

NCNLN

NCTOTL

NROWA

NROWJ

NROWR

BIGBND

EPSAF

ETA

FTOL

4. INPUT PARAMETERS

is the number of general linear constraints in the problem (NCLIN may be zcro).
is the number of nonlinear constraints in the problem (NCNLN may be zero).
must be set to N+ NCLIN + NCNLN.

is the declared row dimension of the array A (NROWA must be at least | and at least
NCLIN).

is the declared row dimension of the array CJAC and the length of the array C (NROWJ
must be at least 1 and at least NCNLN).

is the declared row dimension of the array R (NROWR must be at least N).

is a positive real variable whose magnitude denotes an “infinite” component of £ and
u. Any upper bound greater than or equal to BIGBND will be regarded as plus infinity
(and similarly for a lower bound less than or equal to —BIGBND).

is a positive quantity that should be & good bound on the absolute error in computing
F(z) at the initial point. For many simple functions, EPSAF is of the order of ¢, |F(z)],
where ¢, is the machine precision. A discussion of EPSAF is given in Chapter 8 of Gill,
Murray and Wright (1981).

is a number satisfying 0 < ETA < 1, which controls how accurately the value ay
approximates a univariate minimum of the merit function along px (the smaller the
value of ETA, the more accurate the line search). The recommended value of ETA for
nonlinearly constrained problems is 0.9, which corresponds to a relaxed line search.
If the problem is unconstrained, bound-constrained, or lincarly constrained, a smaller

value of ETA will tend to require more function evaluations, but fewer major iterations.

is a positive tolerance (FTOL < 1) that indicates the number of figures of accuracy
desired in the objective function at the solution. For example, if FTOL is 10~% and
NPSOL terminates successfully, the computed solution should have approximately six
correct figures in F. FTOL should never be less than machine precision.

is a real array of declared dimension (NROWA, N), corresponding to 4, in the problem
specification NI? (Section 1). The i-th row of A, ¢ = 1 Lo NCLIN, contains the cocllicients

of the i-th general linear constraint. If NCLIN is zero, A is not accessed.




BL
:f:I BU
:_:‘::
“ FEATOL
CONFUN

3
v
e

v giw- ¥ v wR T
JROACACALA A

RN -4

1. INPUT PARAMETERS NPSOL/7

is a real array of dimension NCTOTL that contains the lower bounds for all the constraints,
in the following order (which is also observed for BU, CLAMDA, FEATOL and ISTATE). The
first N elements of BL contain the lower bounds on the variables. If NCLIN > 0, the next
NCLIN elements of BL contain the lower bounds for the gencral linear constraints. If
NCNLN > 0, the next NCNLN elements of BL contain the lower bounds for the nonlinear
constraints. In order for the problem specification to be meaningful, it is required that
BL(j) < BU(j) for all 5. To specify a non-existent lower bound for the j-th constraint
(i.e., & = —o0), the value used must satisfly BL(j) < —BIGBND. To specify the j-th
constraint as an equality, the user must set BL(j) = BU(j) = B, say where |8] <
BIGBND.

is a real array of dimension NCTOTL that contains the upper bounds for all the con-
straints, in the same order described above for BL. To specify a non-existent upper
bound (i.e., u; = +00), the value used must satisfy BU(j) > BIGBND.

is a real array of dimension NCTOTL containing positive tolerances that define the
maximum permissible violation in each constraint in order for a point to be considered
feasible, i.e. constraint j is considered satisfied if its violation does not exceed FEATOL(j).
The ordering of the components of FEATOL is the same as that described above under BL.
Note that FEATOL(j) is a bound on the absolute acceptable violation. For example, if the
data defining the constraints are of order unity and are correct to about 6 decimal digits,
it would be appropriate to choose FEATOL(j) as 10~¢ for all relevant j. In general, the
elements of FEATOL should be chosen as the largest possible acceptable values, since the
algorithm of NPSOL becomes less likely to encounter difficulties with ill-conditioning
and degeneracy as the components of FEATOL increase. A warning message is printed
if any component of FEATOL is less than machine precision; the user must not set any
element of FEATOL to zero. A detailed discussion of FEATOL is given in Gill et al. (1983b).

is the name of a subroutine that calculates the vector ¢(z) of nonlinear constraint
functions and its Jacobian for a specified n-vector z. CONFUN must be declared as
EXTERNAL in the routine that calls NPSOL. If there are no nonlinear constraints (NCNLN
= 0), CONFUN will never be called by NPSOL. If there are nonlincar constraints, NPSOL
always calls CONFUN and OBJFUN together, in that order.

The specification of CONFUN is:
SUBROUTINE CONFUN( MODE, NCNLN, N, NROWJ, X, C, CJAC, NSTATE )
INTEGER MODE, NCNLN, N, NROWJ, NSTATE
REAL X(N), C(NROWJ), CJAC(NROWJ,N).

The actual paramcters NCNLN, N, and NROWJ inpul to CONFUN will always be the
same Fortran variables as those input to NPSOL. They must not be altcred by CONFUN.
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4. INPUT PARAMETERS

MODE is a flag that the user may set within CONFUN to indicale a failure in the
evaluation of the nonlinear constraints. On entry to CONFUN, MODE is always nonnegative.
If MODE is negative on exit from CONFUN, the execution of NPSOL will be terminated with

INFORM sect to MODE.
X contains the vector of variables £ at which the constraint functions are to be

evaluated. The elements of X must not be altered by CONFUN.
C should contain the nonlinear constraint values ¢;(z), ¢ = 1 to NCNLN, on exit from

CONFUN.
CJAC should contain the Jacobian matrix of the nonlinear constraint functions on

exit from CONFUN. The i-th row of CJAC contains the gradient of the i-th nonlinear
constraint, i.e. CJAC(s, 5) is the partial derivative of ¢; with respect to z;, 1 = 1 to
NCNLN, 7 = 1 to N. If CJAC contains any constant elements, a saving in computation
can be made by setting them one time only, when NSTATE = 1 (sce below).

NSTATE is set to one by NPSOL on the first call of CONFUN, and is zero for all
subsequent calls. Thus, if the user wishes, NSTATE may be tested within CONFUN in
order to perform certain calculations one time only. For example, the user may read
data or initialize COMMON blocks when NSTATE = 1. In addition, the constant elements
of CJAC can be set in CONFUN when NSTATE = 1, and need not be defined on subsequent
calls.

is the name of a subroutine that calculates the objective function F(z} and its gradient
for a specified n-vector z. OBJFUN must be declared as EXTERNAL in the routine that
NPSOL.
The specification of OBJFUN is:
SUBROUTINE OBJFUN( MODE, N, X, OBJF, OBJGRD, NSTATE )
INTEGER MODE, N, NSTATE
REAL OBJF, X(N), OBJGRD(N).

The actual parameter N input to OBJFUN will always be the same Fortran variable
as that input to NPSOL, and must not be altered by OBJFUN.

MODE is a flag that the user may set within OBJFUN to indicate a failure in the
evaluatlion of the objective function. On entry Lo OBJFUN, MODE is always nonncgalive.
If MODE is negative on exit from OBJFUN, the exccution of NPSOL is terminated with

INFORM set to MODE.
X contains the vector of variables z al which the objective function is to be evaluated.

The X array must not be altered by 0BJFUN.
0BJF should contain the value of the objective function I'(z) on exit from OBJFUN.
OBJGRD should contlain the gradient vector of the objective Tunction. The j-th
componcnt of OBJGRD contains the partial derivative of F' with respect Lo the j-th
variable.

NPV SUNRRRNNS VR NIl ORI SUnss...) FTER . ) O
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FEALIN

ORTHOG
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NSTATE is set to one by NPSOL on the first call of OBJFUN, and to zero on all
subsequent calls. Thus, if the user wishes, NSTATE may be tested in order to perform
certain calculations only on the first call of 0BJFUN — e.g., read data or initialize COMMON
blocks. Note that if there are any nonlinear constraints, CONFUN and OBJFUN are always
called together, in that order.

is a logical variable that indicates whether the user has specified an initial estimate of
the active set of constraints. Il COLD is .TRUE., the initial working set is determined by
the first QP subproblem. If COLD is .FALSE. (a “warm start”), the user must define the
array ISTATE (which gives the status of each constraint with respect to the working set)
and the matrix R (the Cholesky factor of the initial Hessian approximation). The warm
start option is particularly useful when NPSOL is restarted at the point where an earlier
run terminated.

is a logical variable that indicates whether the starting point for the SQP method
should first be made feasible with respect to the bounds and linear constraints of NP.
If FEALIN is .TRUE., the algorithm will determine (if possible) a point that is feasible
with respect to the bounds and linear constraints before beginning the SQP iterations
(where “feasible” is defined by the array FEATOL; see above). This setting of FEALIN
ensures that all iterates within the SQP algorithm will be feasible with respect to the
bounds and linear constraints (this may be essential in certain applications). If FEALIN
is .FALSE., the SQP method will begin with the user-specified initial value of X. In this
case, the iterates will not necessarily be feasible with respect to the linear constraints
of the original problem (unless the original point is feasible). In general, we recommend
a value of .TRUE. for FEALIN.

is a logical variable that indicates whether orthogonal transformations will be used in
the QP algorithm to compute and update the T'Q factorization of the working set

AQ = (0 T)r

where A is a submatrix of A and 7 is reverse-triangular (sce Gill ¢t al., 1982). Il ORTHOG
is .TRUE., the TQ factorization is computed using Houscholder reflections and plane
rotations, and the matrix @ is orthogonal. If ORTHOG is .FALSE., stabilized elementary
transformations are used to maintain the factorization, and @ is not orthogonal. A rule
of thumb in making the choice is that orthogonal transformations require more work,
but provide greater numerical stability. Thus, we recommend setting ORTHOG to .TRUE.
in any of the flollowing situalions: the problem is reasonably small; the functions are

highly nonlinear; the active set is ill-conditioned; or the time required to compute the

TQ lactorization is not significant comparced to the evaluation of the problem functions.
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NPSOL/10 4. INPUT PARAMETERS

Otherwise, setting ORTHOG to .FALSE. will often lead to a reduction in solution time
with negligible loss of reliability.
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" 6. INPUT/OUTPUT PARAMETERS

ISTATE is an integer array of dimension NCTOTL that indicates the status of every constraint
with respect to the current prediction of the active set. The ordering of ISTATE is the
same as that described above for BL, i.e., the first N components of ISTATE refer to the

Py
LI 'Y

K bounds on the variables, the next NCLIN components refer to the linear constraints, and
T4
:‘ the last NCNLN components refer to the nonlinear constraints. The significance of each
- possible value of ISTATE(j) is as follows: .
v ISTATE(j) Meaning
- -2 This constraint (or its linearization) violates its lower bound by more
than FEATOL(j) in a QP subproblem.
-1 This constraint (or its linearization) violates its upper bound by more
than FEATOL(j) in a QP subproblem.
) 0 The constraint is not in the predicted active set.
- 1 This inequality constraint is included in the predicted active set at its
L lower bound.
‘ 2 This inequality constraint is included in the predicted active set at its
:: upper bound.
';: 3 The constraint is included in the predicted active set as an equality.
X This value of ISTATE can occur only when BL(j) = BU(j).
. If COLD = .TRUE., ISTATE need not bec set by the user. However, when COLD is
N FALSE., every element of ISTATE must be set to one of the values given above to define
. a suggested prediction of the active set (which will be used as the initial working set in
the first QP subproblem). The most likely values are:
ISTATE(j) Meaning
0 The corresponding constraint should not be in the initial working set.
1 The constraint should be in the initial working set at its lower bound.
2 The constraint should be in the initial working set at its upper bound.
:: 3 The constraint should be in the initial working set as an equality. This
2 value must not be specificd unless BL(j) = BU(5). The input values 1,
2 or 3 of ISTATE(j) all have the same effect when BL(j) = BU(j).
- On exit from NPSOL, the values in the ISTATE array indicate the composition of the

active set of the final QP subproblem.
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5. INPUT/OUTPUT PARAMETERS

is a real array of declared dimension (NROWR,N) that contains the upper-triangular

. Cholesky factor of the current approximation of the Hessian of the Lagrangian function.
\ If COLD is .TRUE., the array R need not be initialized by the user. If COLD is .FALSE., R
must contain an appropriate upper-triangular matrix.

X is a real array of dimension N that contains the current estimate of the solution. On
, entry to NPSOL, X must be defined; on exit from NPSOL, X contains the final estimate of
- the solution.
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6. OUTPUT PARAMETERS NPSOL/13

6. OUTPUT PARAMETERS

INFORM

ITER

C

CJAC

CLAMDA

OBJF

OBJGRD

is an integer that indicates the result of NPSOL. (When MSGLVL > 0, a short description
of INFORM is printed.) The possible values of INFORM are:

INFORM Definition
<0 The user has set MODE to this negative value in CONFUN or OBJFUN.
0 X satisfies the first-order optimality conditions, i.e., the projected gra-

dient and the active constraint residuals are negligible, and the La-
grange multipliers indicate optimality.

1 No feasible point could be found for the linear constraints and bounds.

o

No improved point for the merit function could be found during the
final line search.

The limit of ITMAX major iterations was reached.
Extremely small Lagrange multipliers could not be resolved.

A descent direction for the merit function could not be found.

© o e W

An input parameter is invalid.
is an integer that gives the number of major iterations performed.

is a real array of dimension NROWJ that contains the values of the nonlinear constraint
functions C(5), § = 1 to NCNLN, at the final iterate. If NCNLN == 0, C is not accessed by
NPSOL.

is a real array of dimension (NROWJ,N) that contains the Jacobian matrix of the nonlinear
constraint functions at the final iterate, i.e. CJAC(%, ) contains the partial derivative of
the ¢-th constraint function with respect to the j-th variable, + = 1 to NCNLN, j =1
to N. If NCNLN = 0, CJAC is not accessed by NPSOL. (See the discussion of CJAC under
CONFUN above.)

is a real array of dimension NCTOTL that contains the final multiplicr estimate for every
constraint (i.e., the multipliers of the final QP subproblem). The ordering of CLAMDA
is the same as that given above for BL. If the j-th constraint is defined as “inactive”
by the ISTATE array, CLANDA(j) should be zero; if the j-th constraint is an inequality
active at its lower bound, CLAMDA(j) should be non-negative; if the j-th constraint is an
inequality active at its upper bound, CLAMDA(5) should be non-positive.

is the valuc of the objective function F(z) at the final itcrate.

is a real array of dimension N that contains the gradient of the objective function.
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7. WORKSPACE PARAMETERS

v is an integer array of dimension LENIW, which provides integer workspace for NPSOL.
LENIW  is the dimension of IW, and must be at least 2N.
] is a real array of dimension LENW, which provides real workspace for NPSOL.

LENW is the dimension of W, and must be at lcast 2N + N(NCON + NROWJ + 6) + 2NCON + NROWA +
max(10N + 2NCON + NROWA + NROWJ, 5N + 4NCON), where NCON = max(1, NCLIN + NCNLN).
An overestimate of this number is 2N? + N(NCON + NROWJ + 16) + 6NCON 4 2NROWA + NROWJ.

If MSGLVL > 0, the amount of workspace provided and the amount of workspace required
are printed. As an alternative to computing LENW from the formula given above, the user may
prefer to obtain an appropriate value from the output of a preliminary run with a positive value
of MSGLVL and LENW set to 1 (NPSOL will then terminate with INFORM = 9).
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'- 8. AUXILIARY SUBIPROGRAMS AND LABELLED COMMON NPSOL/15
:' 8. AUXILIARY SUBPROGRAMS AND LABELLED COMMON
;:' The auxiliary subroutines used by NPSOL may be divided into three groups. The first group
‘;}_, includes the following subroutines, which are not part of the QP package:
» GETPTC  NPCORE  NPGETC  NPGETF
. NPGLF NPHESS NPIQP NPPRT
N NPQPGN NPRHO NPSRCH NPTQ
A.:: R1BFGS R1MOD.
-'~ The second group of subroutines — those used by the QP package — are:
ADDCON ALLOC BDPERT BNDALF
3N CHKDAT DEL.CON FINDP GETLAM
3 LPBGST  LPCORE  LPCRSH LPDUMP
o LPGRAD LPPRT MOVEX QPCHKP
QPCOLR QPCORE QPCRSH QPDUMP
QPGRAD QPPRT PRTSOL RSOLVE
TQADD TSOLVE ZYPROD.

.0, .
% A Ayty Aty

NPSOL also uses the basic linear algebra subroutines
AXPY CONDVC COPYMX COPYVC
DoT DSCALE ELM ELMGEN
ETAGEN QUOTNT REFGEN ROT3
ROTGEN SCMOVE V2NORM ZERQVC

)
[N

';‘:- .""". O

.
.

- ‘-..-l. .

and the subroutine MCHPAR, which dcfines machine-dependent constants (see Section 11).

'T-_ . The subroutines in the NPSOL package use the following labelled COMMON areas:
= SOLMCH (15 REAL variables; see Section 11)
SOL1CM (3 INTEGER variables)
- SOL3CM (4 INTEGER variables)
P SOL4CM (10 REAL variablcs)
X SOL1LP (15 INTEGER variablcs)
. SOL1NP (30 INTEGER variables)
o SOL2NP (2 INTEGER variables).
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9. DESCRIPTION OF THE PRINTED OUTPUT

The following is a description of the terse line printed at each major iteration if the last two -

digits of MSGLVL > 5. The printout from the QP subroutines is described in Gill et al. (1983a).

All quantities are evaluated at the end of the iteration. _1

I™ is the major iteration count, k. “‘

ITQP is the number of minor iterations needed to solve the QP subproblem. J

STEP is the step a; taken along the computed search direction. i

NUMF is the total number of evaluations of the problem functions. i

OBJECTIVE is the value of the objective function, F(zx). ;
o

BND is the number of bounds in the predicted active set.

LC is the number of linear constraints in the predicted active set.

NC is the number of nonlinear constraints in the predicted active set.

NCOLZ is N minus the number of constraints in the predicted active set.

NORM GFREE is the norm of the gradient of the objective function with respect to the

free variables (not printed if ORTHOG is .FALSE.).

NORM QTG is a weighted norm of the gradient of the objective function with respect
to the free variables (not printed if ORTHOG is .TRUE.).

NORM ZTG is the Euclidean norm of the projected gradient.

COND H is a lower bound on the condition number of the Hessian approximation,
i.c. a bound on cond(/1) = cond(RTR).

COND T is a lower bound on the condition number of the matrix of predicted

'

"

E
Y

active constraints.

=

NORM C is the norm of the vector of con.straint violations and residuals of the

LAY

A - 9 U AR -

constraints in the predicted active set.

RHO is the penalty parameter used in the augmented Lagrangian merit func-

tion.

--------------------
........
.....
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o 9. DESCRIPTION OF THE PRINTED OUTPUT NPSOL/17
N
"“ CONV is a four-letter indication of the status of the four convergence tests;
A each letter is “T” if the test is satisfied, and “F” otherwise. The four
; tests indicate whether: (a) the projected gradient is small; (b) the active
- constraint residuals are small; (c) the multipliers indicate optimality; (d)
. ‘ the last change in X was small.
: 1} refers to the quasi-Newton update of R to obtain a new estimate of the
_-‘. Hessian. Uis 1 if the update was performed, and 0 if no update occurred.
Y
; The following is a description of the solution output of NPSOL. Note that names are automati-
p «ally assigned to each variable and constraint.
b The following printout is given for each variable z;.
'.jz: VARIABLE is the name (VARBL) and index j, j = 1 to N, of the variable. k
. STATE gives the state of the variable (FR if not in the working set, EQ if in
- the working set as a fixed variable, LL if in the working set at its lower
:j: bound, and UL if in the working set at its upper bound). If VALUE lies
L outside the upper or lower bounds by more than FEATOL(j), STATE will
be “++” or “--" respectively.
' VALUE is the value of the variable z; at the final iteration.
i LOWER BOUND is the lower bound BL(j) specified for the variable.
_:; UPPER BOUND is the upper bound BU(j) specified for the variable. 3
~ 4
N LAGR MULTIPLIER is the value of the Lagrange multiplier for the corresponding bound ]
constraint. This will be zero if STATE is FR. If X is optimal and STATE is i
;:: LL, the multiplier should be non-negative; if STATE is UL, the multiplier ]
. should be non-positive. f
RESIDUAL is the difference between the variable and its nearer bound. 'i‘
: 1
The following printout is given for each constraint. :
- LINEAR CONSTR is the name (LNCON) and index ¢, ¢ = 1 to NCLIN, of a linear constraint. :
M N
- NONLNR CONSTR is the name (NLCON) and index ¢, = 1 to NCNLN, of a nonlinear con- 1
-‘ straint. :

R PP I T A O S I T I A R P
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STATE is the state of the constraint (FR for a constraint not in the working set,

{ EQ for an equality in the working set, LL for an inequality constraint
2 in the working set at its lower bound, UL for an inequality constraint
_ in the working set at its upper bound). STATE will be “++” or “--"
‘:: respectively if VALUE lies outside the upper or lower bounds by more

i than its feasibility tolerance.

VALUE is the value of the constraint at the final point.

' LOWER BOUND is the specified lower bound for the constraint.

-y
.V CITIRR R

UPPER BOUND is the specified upper bound for the constraint.

LAGR MULTIPLIER is the value of the Lagrange multiplier. This will be zero if STATE is FR.
If X is optimal and STATE is LL, the multiplier should be non-negative;
if STATE is UL, the multiplier should be non-positive.

I PR )
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RESIDUAL is the residual of the constraint with respect to its nearer bound, i.e.,
the difference between VALUE and the nearer of the two bounds.
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. 10. ERROR RECOVERY NPSOL/19

10. ERROR RECOVERY

:'? The input data for NPSOL should always be checked (even if NPSOL terminates with the
". value INFORM = 0!). Two common sources of error are uninitialized variables and incorrect
= gradients, which may cause underflow or overflow on some machines. The user should check that

all components of A, BL, BU, FEATOL and X are defined on entry to NPSOL, and that OBJFUN and
CONFUN compute all relevant components of 0BJGRD, C and CJAC.
The present version of NPSOL contains no procedure for checking the computed gradients.

._‘_-:t Incorrect gradients may lead to termination with INFORM = 2, 3 or 5.
) Other error conditions may arise as follows.
. Termination Recommended Action
i
. Underflow If the machine parameter indicating an underflow check (WMACH(9)) is
zero, floating-point underflow may occur occasionally, but can usually be h
ignored. To avoid underflow, set WMACH(9) to a positive value; however,

o this will lead to a noticeable loss of efficiency. If underflow continues to
- occur for no apparent reason, contact the authors at Stanford University.

Overflow If the printed output before the overflow error contains a warning about
serious ill-conditioning in the working set when adding the j-th con-

a

straint, it may be possible to avoid the difficulty by increasing the
magnitude of FEATOL(j), and rerunning the program. If the message

o
A
et ol

recurs even after this change, the offending linearly dependent constraint
must be removed from the problem. If overflow occurs in one of the

s
Y

user-supplied routines (e.g., if the nonlinear functions involve exponen-

R AP

tials or singularities), it may help to specify tighter bounds for some of

LSRN

2y

4

the variables (i.e., reduce the gap between appropriate ¢; and u;). If
overflow continues to occur for no apparent reason, contact the authors
a! Stanford University.

INFORM = 1 A feasible point could not be found for the bounds and linear constraints.

. This exit occurs if there is a failure in the LP phase of any QP subproblem
e (see Gill et al., 1983a). The most likely reason for this condition is that I
the linear constraints and bounds are incompatible or inconsistent; if
so, NPSOL will terminate during the first major iteration. In order for
a feasible point to exist, the constraints must be re-formulated, or the

corresponding components of FEATOL must be re-defined, as discussed in
AN Gill et al. (1983a). Another possibility is that dependencies among the
constraints and bounds have led to cycling in the LP phase; this will

P S
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NPSOL/20 10. ERROR RECOVERY

3
L _ always be the case if NPSOL terminates with INFORM = 1 after the first
{ major iteration. |

e INFORM == 2 A sufficient decrease in the merit function could not be attained during
the final line search. This sometimes occurs because an overly stringent

accuracy has been requested, i.e., FTOL is too small; in this case the

z[_g-.' oL

final solution may be acceptable despite the non-zero value of INFORM
(see Gill, Murray and Wright, 1981, for a discussion of the attainable _
accuracy). If the projected gradient at the final point is not small, the ‘_:
-.- computed gradients may be incorrect. Another possibility is that the ﬂj
] search direction has become inaccurate because of ill-conditioning in the a
Hessian approximation or the matrix of constraints in the working set; 3
either form of ill-conditioning also tends to be reflected in large values of

ITQP (the number of iterations required to solve each QP subproblem).

If the condition estimate of the Hessian (COND H) is extremcly large, it

: may be worthwhile to try a warm start at the final point with COLD set
;:i to .FALSE., ISTATE unaltered, and R set to the identity matrix. If the
: matrix of constraints in the working set is ill-conditioned (i.e., COND T

is extremely large), it may be helpful to run NPSOL with relaxed values
of the components of FEATOL corresponding to nearly dependent con-

:‘-‘; straints. (Constraint dependencies are often indicated by wide variations
~:j in size in the diagonal elements of the matrix T, whose diagonals will be
printed if the last two digits of MSGLVL > 30.)

INFORM = 3 If the algorithm appears to be making progress, the value of ITMAX may
be too small. If so, increase ITMAX and rerun NPSOL (possibly using the
warm start facility). If the algorithm seems to be “bogged down”, the
user should check for incorrect gradients or ill-conditioning as described
above under INFORM = 2. Note that ill-conditioning in the working set is

:
fl
q
;
K

sometimes resolved automatically by the algorithm, in which case per-

IO

forming additional iterations may be helpful. However, ill-conditioning

in the Hessian approximation tends to persist once it has begun, so that

Pl

allowing additional iterations without altering R is usually inadvisable. If
the constraint violations have not been significantly reduced, the prob-
lem may have no feasible point.

INFORM = 4 A guaranteed procedure for resolving extremely small Lagrange multi-

pliers has not been included in NPSOL, since it would be inherently com-
binatorial (sce Gill, Murray and Wright, 1981, for further discussion).
In some cascs, the difficulty may be avoided by removing certain active

IV SIS \ FRIEE N . J%




10. ERROR RECOVERY NPSOL/21

constraints with very small multipliers from the problem, and rerunning
._ NPSOL.

N INFORM = 5 With exact arithmetic, the search direction should always be a descent
direction for the merit function. If this value of INFORM occurs, the com-
puted gradients may be incorrect, or ill-conditioning may have destroyed
the accuracy of the search direction. The user should check for these
~ conditions as described above under INFORM = 2.

0

«.
)

[3

4 88 .
[ AR R WS Y

1R

a
PR Y GP Y

ORI
oot te et N Fl
PN PR

¥a e
»
e

R4




...................

oo ad B R N AT IR R R W TR TR EONT IR N W N AR D) Paarn de Saae e dhe Sintciiett Bese Tay Sas Shat it INAC ISt
ANUMEAAAEN Sl S LA SR RN S o R R BN .

NPSOL/22 11. IMPLEMENTATION INFORMATION

11. IMPLEMENTATION INFORMATION

This program has been written in ANSI (1966) Fortran and tested on an IBM 3081 computer
using the WATFIV Compiler, Version 1, Level 6. All subroutines in NPSOI. are PFORT-
compatible (Ryder, 1974), except for some A2 Hollerith specifications.

At the beginning of NPSOL, the subprogram MCHPAR is called to assign various machine-
dependent parameters. These parameters are stored in the array WMACH(15) in the labelled COMMON
block SOLMCH.

The specification of MCHPAR is

SUBROUTINE NCHPAR
REAL WMACH
COMMON /SOLMCH/ WMACH(15)

The first eleven components of the REAL array WMACH must be set in MCHPAR. The components
of WMACH are defined as follows.

Definition
WMACH(1) is NBASE, the base of floating-point arithmetic.
WMACH(2) is NDIGIT, the number of NBASE digits of precision.
WMACH(3) is EPSMCH, the floating-point precision.
WMACH(4) is RTEPS, the square root of EPSMCH.
WMACH(5) is FLMIN, the smallest positive floating-point number.
WMACH(6) is RTMIN, the square root of FLMIN.
WMACH(7) is FLMAX, the largest positive floating-point number.
WMACH(8) is RTMAX, the square root of FLMAX.
WMACH(9) is UNDFLW, which specifies whether or not NPSOL should check for
underflow in certain computations. If UNDFLW = 0, no undcrilow

checking will be performed. If UNDFLW is set to a positive number,
NPSOL will check for underflow and will replace too-small quantities
by zero. Nole that NPSOL will run faster if no underflow checking

takes place.
WMACH(10) is NIN, the filc number for the input stream.
WMACH(11) is NOUT, the file number for the output stream.
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tL IMPLEMENTATION INFORMATION

The following version of MCHPAR (which is provided by the Systems Optimization Laboratory)

contains the paramecters associated with double precision on a machine in the IBM 370 serics.

NI’SOL/23

The user must substilule a version of MCHPAR thal is appropriate for the machine to be used.

(4]

AOOOCOO0OO0NONO

C

C-~u-
Commm

c

C END OF MCHPAR

SUBROUTINE MCHPAR

DOUBLE PRECISION  NMACH

COMMON /SOLMCH/ MMACH(15)

MCHPAR MUST DEFINE THE RELEVANT MACHINE PARAMETERS AS FOLLOMWS.
WMACH(1) = NBASE = BASE OF FLOATING-POINT ARITHMETIC.
WMACH(2) = NDIGIT = NO. OF BASE MMACH(1) DIGITS OF PRECISION.
WMACH(3) = EPSMCH = FLOATING-POINT PRECISION.

WMACH(4) = RTEPS = SQRT(EPSMCH),

IMACH(5) = FLMIN = SMALLEST POSITIVE FLOATING-POINT MARBER.
WMACH(6) = RTMIN = SGQRT(FLMIN).

WMACH(7) = FLMAX = LARGEST POSITIVE FLOATING-POINT MABER.
WMACH(8) = RTHMAX = SQRT(FLMAX).

HMACH(9) = UNDFLW = 0.0 IF UNDERFLOMN IS NOT FATAL, *VE OTHERWISE.
MMACH(10) = NIN = STANDARD FILE NRBER OF THE INPUT STREAM.
WMACH(11) = NOUT = STANDARD FILE NMUMBER OF THE OUTPUT STREAM.
INTEGER NBASE, NDIGIT, NIN, NOUT

DOUBLE PRECISION DSGRT

NBASE =16

NDIGIT = 14

WMACH(t) = NBASE

WMACH(2) = NDIGIT

WMACH(3) = WMACH(1)we(1 - NDIGIT)

WMACH(4) = DSQRT(KMACH(3))

WMACHIS) = WMACH(1)x%(-62)

WNMACH(6) = DSGRT(WNMACH(5))

WMACH(7) = WMACH(1)%x61

WMACH(8) <= DSQRT(MNMACH(7))

WMACH(9) = 0.0D%0

NIN =5

NoUT =6

WMACH(10) = NIN

MMACH(11) = NOUT

RETURN

END

IN WATFIV, ALLOW UP TO 100 UNDERFLONWS.
CALL TRAPS ( 0,0,100 )
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11. IMPLEMENTATION INFORMATION

The values of NBASE, NDIGIT, EPSMCH, FLMIN and FLMAX for several machines are given in the
following table, for both single and double precision; RTEPS, RTMIN and RTMAX may be computed
using Fortran statements. The values NIN and NOUT depend on the machine installation.

For each precision, we give two values for EPSMCH, FLMIN and FLMAX. The first value is a

Fortran decimal approximation of the exact quantity; use of this value in MCHPAR should cause

no difficulty except in extreme circumstances. The second value is the exact mathematical

representation.
Table of machine-dependent parameters
Variable | IBM 360/370 | CDC 6000/7000 | DEC 10/20 Univac 1100 DEC VAX
Single Single Single Single Single
NBASE 16 2 2 2 2
NDIGIT 8 48 27 27 24
EPSMCH 9.54E-7 7.11E-16 7 .46E-9 1.50E-8 1.20E-7
16-5 2—41 2—21 2—28 2-23
FLMIN 1.0E-78 1.0E-293 1.0E-38 1.0E-38 1.0E-38
16-85 2—915 2—129 2—129 2—128
FLMAX 1.0E+75 1.0E+322 1.0E+38 1.0E+38 1.0E+38
1663(1 _16-6) 21070(1_2-48) 2127(1 _2—21) 2121(1_2-27) 2127(1_2-24)

Variable | IBM 360/370. | CDC 6000/7000 | DEC 10/20 Univac 1100 DEC VAX
Double Double Double Double Double
NBASE 16 2 2 2 2
NDIGIT 14 96 62 61 56
EPSNCH 2.22D-16 2.63D-29 2.17D-19 8.68D-19 2.78D-17
16—13 2-05 2—82 2—80 2—55
FLMIN 1.0D-78 1.0D-293 1.0D-38 1.0D-308 1.0D-38
1668 9-975 9-129 ,)=1025 9-128
FLMAX 1.00+76 1.0D+322 1.0D+38 1.0D+307 1.0D+38
16%%(1-16~14) 21070(1_9-9) 9127(1-2-62) [ 91023(1_9-61) | 9127(1_9-56)
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12. EXAMPLE PROGRAM AND OUTPUT

This section contains a listing and the computed results from a sample main program that
calls NPSOL to solve one version of the so-called “hexagon” problem (a different formulation is
given as Problem 108 in Hock and Schittkowski, 1981). The problem is to determine the hexagon
of maximum area such that no two of its vertices are more than one unit apart (the solution is
not a regular hexagon).

Al constraint types are included (bounds, linear, nonlinear), and the Hessian of the Lagrangian
function is not positive definite at the solution. The problem has nine variables, non-infinite
bounds on six of the variables, four general linear constraints, and fifteen nonlinear constraints.

The objective function is

F(z) = —z92¢ + 127 — 2327 — T5Zs + T4 + 2375.
The bounds on the variables are
2120, 2520, 2420, 2120, 2z4<0, and z¢9<0.

Thus,
& =( 0,-00,-00,~00, 0, 0, 0,=-00,—00)T

up = ( 400, +00, +00, +00, +00, +00, +00, 0, O)T.

The general linear constraints are

22—-21 20, 23—2220, z3—242>20, and z4-z5 > 0.

Hence,
0 -1 1 0 0 0 o0 0 o0 O +00
0 0 -1 1. 6 0 0 0 o O 400
t = y A= , and u, =
0 0 0 1 -1 0 0 0 0 0 +00
0 6 0 0 1 -1 0 O o0 O +00
The fifteen nonlinear constraint fanctions are
ei(z) =z} + 23, ca(2) =(z3-21)% + (27 - 26)?,  e3(z) = (23 -2)® +23,
ci(z) =(z1 -24)% +(z6 - 28)%, c5(z) = (21 -25)* + (28 - 29)?, co(z) =2} +2F,
c1(z) =(z3 - z3)? + 23, ca(z) ~(z4 -22)? + (28 - 77)%,  co(z) = (22 - 25)% + (27 - 29)%,

c10(z) - 23, c11(z) = (24 - z3)* +23, cia(z) = (25 - 23)? + 23,

c13(z) =23 + 23, c14(z) =(z¢ - 25)? +(z9 - 28)3, c15(z) =23 +2}.

................
------------




.........
-------------------------------------

NPSOL/26 12. EXAMPLE PROGRAM AND OUTPUT

(For most applications, it would be preferable to replace the tenth nonlinear constraint (23 < 1)
by the bounds -1 < z3 < 1.
The nonlinear constraints are all of the form

(z) <1, i=1,...,15

hence, all components of £, are —oo, and all components of u, are 1.
The starting point zg is

zo = ( .33, .87, 1.1, .67, .33, .33, .67, —.33, —.87 )7,

£ = (.060947, .59765, 1.0, .59765, .060947, .34377, .5, —.5, ~.34377 )7,

and F(z') = —1.34996. (The optimal objective function is unique, but is achieved for other values
of z.) Six nonlinear constraints are active at z. The sample solution output is given later in this

4
and F(zg) = —1.4333 (to five figures). The optimal solution (to five figures) is
section, following the sample main program and problem definition.
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12. EXAMPLE PROGRAM AND OUTPUT NPSOL/27
c
C EXAMPLE PROGRAM FOR SUBROUTINE NPOL
C DOUBLE PRECISION VERSION 1.1. APRIL 1983,
C THE VALUES OF THE PARAMETERS EPSAF, FTOL, AND FEATOL ARE
C APPROPRIATE FOR A MACHINE WITH A PRECISION OF 15 DECIMAL DIGITS.
C S I NS I S I I I I HHEHHEE RN

OO NCRDIPUN -

22
23
26

OO0O000O000D

000N OO0

¢
c
c
c
[ o

INTEGER I, INFORM, ITER, ITMAX, J,» LIWORK, LMWORK
INTEGER MSGLVL, N, NCLIN, NCNLN, NCTOTL

INTEGER NOUT, NROWA, NROWJ, NROWR, NSTATE
INTEGER ISTATE(28) °

INTEGER INORK(50)

DOUBLE PRECISION BIGBND, EPSAF, EPSIMCH, RTEPS, ETA, FTOL, OBJF
DOUBLE PRECISION A(5,9), BL(28), BU(28), FEATOL(28)

DOUBLE PRECISION C(20), CJAC(20,9), CLAMDA(28)

ODOUBLE PRECISION OBJGRD(9): R(10,9), X(9)

DOUBLE PRECISION WORK(1000)

DOUBLE PRECISION DSQRY

DOUBLE PRECISION ZERO, ONE

LOGICAL COLD, FEALIN, ORTHOG
EXTERNAL OBJFUN, CONFUN

DATA ZERO , ONE
" /0.00%0, 1.0D+0/

SET THE DECLARED ARRAY DIMENSIONS.

NROMA = THE DECLARED ROM DIMENSION OF A.

= THE DECLARED ROM DIMENSION OF CJAC.
= THE DECLARED ROMW DIMENSION OF R.

THE LENGTH OF THE INTEGER WMORK ARRAY.

NROWJ
NROWR
LINORK
LWORK THE LENGTH OF TNE DOUBLE PRECISION MORK ARRAY.

SET THE PROBLEM DIMENSIONS.
N = THE NIMBER OF VARIABLES.
NCLIN = THE MRBER OF GENERAL LINEAR CONSTRAINTS (MAY BE 0).
LN = THE NUAMBER OF NONLINEAR CONSTRAINTS (MAY BE 0).
NCTOTL = THE TOTAL NABER OF VARIABLES AND CONSTRAINTS.
(THE ARRAYS ISTATE, BL, BU, CLAMBDA MUST BE AT LEAST
THIS LONG.)

N z9
NCLIN = &
NCNIN = 15
NCTOTL = N ¢ NCLIN ¢ NCNLN

ASSIGN THE DATA ARRAYS.

BOUNDS .GE. BIGBND MILL BE TREATED AS PUUS INFINITY.
SOUNDS .LE. -~ BIGBND WILL BE TREATED AS NINUS INFINITY.
NOUT = THE UNIT NUIER FOR PRINTING.

e e

P
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NPSOL/28 12, EXAMPLE PROGRAM AND OUTPUT
oy C A 3 THE GENERAL CONSTRAINT MATRIX.
T c oL = THE LOMER BOUNDS ON X, A®X AND C(X).
c W = THE UPPER BOUNDS ON X, A®X AND C(X).
g c = THE INITIAL ESTIMATE OF THE SOLUTION.
c
26 NUT =6
- 27 BIGBAD = 1.00+10
o 28 00 30 J = 1, NCTOTL
0 29 BL(J) = -BIGBND
) 30 BULJ) = BIGBND
e 31 30 CONTINUE
oy 32 BL(1) = ZERO
- 33 BL(5) = ZERO
b 34 BL(6) = ZERO
pe 35 BL(7) = ZERO
c
BN C SET LOWER BOUNDS OF ZERO FOR THE FOUR LINEAR CONSTRAINTS.
c
3% BL(10) = ZERO
37 BL(11) = ZERO
'--. 38 BL(12) = ZERO
- 39 BL(13) = ZERO
c
N 40 BU(S) = ZERO
res o1 BU(9) = ZERO
Sy c
Rt C SET UPPER BOUNDS OF ONE FOR ALL 15 NONLINEAR CONSTRAINTS.
N c
42 DO 40 J = 14, 28
. 43 BUIJ) = ONE
- “ 40 CONTINUE
c
45 X(1) = 33040
46 X(2) = .67%
&7 X(3) = 1.10%
48 X(4) = 674
- 49 X(5) = 33040
50 X(6) = .33040
51 X(7) = .67D¢0
52 X(8) = -.330¢0
e 53 X(9) = -.670%0
o c

54 D060 J =1, N
o 55 DO 50 I = 1, NCLIN
~'a 56 Al1,J) = ZERO
57 50  CONTINUE
o 58 60 CONTINUE
59 At1,1) = -ONE
60 A(1,2) = ONE
61 A(2,2) = -ONE
o 62 A(2,3) = ONE
63 A(3,3) = ONE
64 A(3,4) = -ONE
65 A(4,4) = ONE
» 66 A(4,5) = -ONE
c
C PRINT THE DATA.
o c
o 67 MRITE (NOUT, 2100)
“ 68 0070 I = 1, NCLIN
ot
¥
U'J
[ o
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12. EXAMPLE PROGRAM AND OUTPUT NPSOL/29
69 HRITE (NOUT, 2200) I, (A(X,J), J=1,N)
70 70 CONTINUE
" WRITE INOUT, 2300) (BL{J), J=1,NCTOTL)
72 NRITE (NOUT, 2400) (BU(J), J=1,NCTOTL)
73 WRITE (NOUT, 2500) ( X(J}, J31,N)
c
c
C ALLON UP TO 50 MAJOR ITERATIONS TO FIND A SOLUTION.
c
74 ITMAX = 50
c
C ASK FOR BRIEF OUTPUT EACH MAJOR ITERATION, AND A FULL PRINT-OUT OF
C THE FINAL SOLUTION.
c
d MSGLVL = 10
C
C SET THE ABSOLUTE PRECISION OF THE OBJECTIVE AT THE STARTING POINT.
c
76 NSTATE =
4 CALL OBUFUNI 2, N» X, OBJF, OBJGRD, NSTATE )
78 EPSAF = EPSMCH * DABS( OBJF )
c
C USE A SLACK LINESEARCH.
C SET THE REQUIRED NUMBER OF CORRECT FIGURES IN THE OPTIMAL OBJECTIVE.
C THE VALUE CHOSEN HERE (FTOL = 10 EPSMCH) ASKS FOR ALMOST FULL
C PRECISION IN OBJF.
c
79 ETA = 0.904%0
a0 FTOL = 10.0D%0 % EPSMCH
C
C AT THE SOLUTION, ANY CONSTRAINT MAY BE VIOLATED BY AS MUCH AS
C THE SQUARE ROOT OF THE MACHINE PRECISION.
c
8t RTEPS = DSQRT( EPSMCH )
82 00 80 J = 1, NCTOTL
83 FEATOL(J) = RTEPS
84 60 CONTINUE
c
C A COLD START IS NEEDED FOR THE FIRST CALL TO NPSOL.
C START THE NONLINEAR ITERATIONS AT A POINT THAT IS FEASIBLE MNITH
C RESPECT TO THE LINEAR CONSTRAINTS AND BOUNDS.
C USE AN ORTHOGONAL FACTORIZATION OF THE MATRIX OF CONSTRAINTS
C 1IN THE WORKING SET.
c
85 CoLD = .TRUE.
86 FEALIN = .TRUE.
87 ORTHOG = .TRUE.
c
c
C SOLVE THE PROBLEM.
c
88 CALL NPSOL(U ITMAX, MSGLVL, N,
bod NCLIN, NCNLN, NCTOTL, NROWA, NROWJ, NROWR,
» BIGBND, EPSAF, ETA, FTOL,
- A, BL, BU, FEATOL,
» CONFUN, OBJFUN, COLD, FEALIN, ORTHOG.
bl INFORM, 1ITER, ISTATE,
] C» CJAC, CLAMDA, OBJF, UBJGND, R, X,
# INORK, LINORK, WORK, LMORK )
.
A A R N N NS S N

e B
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89

"
92

93

95
97

9
100

103
104
105
106
107

109

1t
112
13
114

113

12. EXAMPLE PROGRAM AND OUTIPUT

TEST FOR AN ERROR CONDITION.
IF (INFOR .6T. €) G0 TO %0
THE FOLLOWING IS FOR ILLUSTRATIVE PURPOSES ONLY.

NE DO A NARM START NITH THE FINAL MORKING SET AND R OF THE PREVIOUS
RUN, BUT NITH A SLIGHTLY PERTURBED STARTING POINT.

cOMO0O00 00

0O 100V =1, N
X(J) = X(J) + 0.05D0+0
100 CONTINUE
RESET THE ABSOLUTE PRECISION OF THE OBJECTIVE FUNCTION.

EPSAF = EPSMCH » DABS( OBJF )

0o OO0

COLD = .FALSE.

MS6LVL = 5

WRITE (NOUT, 2600)

MRITE (NOUT, 2500) (X(J), J=1,N)

CALL NPSOLU ITMAX, MSGLVL, N,

NCLIN, NCNLN, NCTOTL, NROMA, NROWJ, NROMR,
BIGBND, EPSAF, ETA, FTOL,

Ay BL, BU, FEATOL,

CONFUN, OBJFUN, COLD, FEALIN, ORTMOS,
INFORM, ITER, ISTATE,

C» CJAC, CLAMDA, OBJF, OBJSRD, R, X,
IHORK, LINORK,; NORK, LNORK )

IF (INFORN .67. 0) 60 TO 900
STOP

ERROR EXIT.

(2 X 3 Xy

900 MRITE (NOUT, 3000) INFORM
STOP

c

€100 FORMAT(/ 120 RONS OF A.)

2200 FORMAT(/ (1X, X3, 4X, 9F8.2))

2300 FORMAT(/ 14H LONER BOUNDS. / (1X, 1P7E10.2))

2400 FORMAT(/ t4H UPPER BOUNDS. / (1X, 1P7E10.2))

2500 FORMAT(/ 124 INITIAL X. / (1X, 7F10.2))

2600 FORMAT(//68H A RUN OF THE SAME EXAMPLE MITH A MARM START....)
3000 FORMAT(/ 32H NPSOL TERMINATED MITH INFORM =, I3)

c
C END OF THE EXAMPLE PROGRAM FOR NPSOL.
END
SUBROUTINE OBJFUN( MODE, N» X, OBJF, OBJGRD, NSTATE )
INTEGER MODE, N, NSTATE
OOUBLE PRECISION OBJF
OOUBLE PRECISION X(N), OBJGRD(N)
¢
c
C OBJFUN COMPUTES THE VALUE AND FIRST DERIVATIVES OF THE NONLINEAR
C OBJECTIVE FUNCTION.
c

OBJF = = X(2)MX(6) & X(VINX(T) « XUIINN(T) = R(BIN(P)
] + X(4)X(9) * N(3)wx(8)

D AN B T A R T R
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12. EXAMP'LE PROGRAM AND OUTPUT NI’'SOL/31

) c '
= 116 OBJGRD(1) = X(7) i
1z OBJSRD(2) = - X(6) g
- 18 OBJSRD(3) = - X(7) * X(8) i
) 19 OBJGRD(4) = X(9) .
120 OBJERD(5) = - X(8)
, 121 OBJGRD(6) = - X(2)
o 122 OBJGRD(7) = - X(3) + X(1)
123 OBJGRD(8) = - X(5) + X(3)
= 126 OBJGRD(9) =  X(4&)
N 128 RETURN
c
< C END OF OBJFUN
v 126 o
o 127 SUBROUTINE CONFUN( MODE, NCNLN, N, NROWJ, X, €, CJAC, NSTATE )
N 128 INTEGER MODE, NCNLN, N, NROWJ, NSTATE
129 DOUBLE PRECISION  X(N), C(NRGMJ), CJACINROMJ,N)
c
o c
o C CONFUN COMPUTES THE VALUES AND FIRST DERIVATIVES OF THE NONLINEAR 1
C CONSTRAINTS.
.. c
2 C THE ZERG ELEMENTS OF JACOBIAN MAYRIX ARE SET ONLY ONCE. THIS OCCURS
C DURING THE FIRSY CALL TO CONFUN (NSTATE = 1).
' c
=y 130 INTEGER I J
131 DOUBLE PRECISION ZERO, TWO
132 DATA ZERO , THO
" /70.0040, 2.0040/
v c
133 IF (NSTATE .NE. 1) 60 TO 200
134 D0 120 J = 1, N
138 DO 110 I = 1, NCNLN
136 CJAC(I,J) = ZERO
137 110 CONTINUE
b, 138 120 CONTINUE
c
J 139 200 C(1) = X(1)ww2 ¢ X(e)wne
-, 140 CIAC1,1) =  THOWX(1)
" 141 CJAC(1,6) =  TWOWX(6)
c
142 c(2) B (X(2) - X(1)InN2 & (X(7) = X(6))mn2
143 CJACIZ,1) = - THOWIX(2) - X(1))
: 144 CJAC(2,2) =  THOWIX(2) - X(1))
145 CJAC(2,6) = - THORIX(7) - X(6))
x 166 CIACI2,7) = THOM(X(7) - X(6))
e c
147 c(3) T (X(3) - X(1))eng ¢ X(6)wwg
- 148 CJACI3,1) = - THOW(X(3) - X(1))
> 149 CJAC(3,3) = TMOM(X(3) - X(1))
S 150 CJIAC(3,6) =  THOWX(6)
¢
v 151 cta) = (X(1) - X(ADIWNZ & (X(6) - X(8))wu
=~ 152 CIACIS, 1) =  THOWIX(1) - X(4))
s 153 CJIACIS,4) = - THOW(X(1) - X(&4))
3 154 CJAC(4,6) =  THOW(X(6) - X(8))
- 155 CJIAC(S,8) = - THOW(X(6) - X(8))
s r
r
P.\‘:
v
o
)
l'
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156
187
158
159
160

161
162
163

164
165
166
167

168
169

171
172

173
174
175
176
177

178
179

180
181
182
183

184
185
186
187

188
189
190

191

193
194
198
196
197

198
199

C(S)

CJIAC(S,1)
CJAC(S,5)
CJAC(5,6)
CJAC(S,9)

c(s)
CJAC(6,2)
CJAC(6,7)

cn

CJAC(7,2)
CJAC(7,3)
CJAC(7,7)

C(8)

CJAC(8,2)
CJAC(8,4)
CJAC(8,7)
CJAC(8,8)

c9

CJACL9,2)
CJAC(9,5)
CJIAC(9,7)
CJAC(9,9)

cu10)
CJAC(10,3)

ca)

CJIAC(1%,3)
CJIAC(11,4)
CJAC(11,8)

cu12)

CJAC(12,3)
CJAC(12,5)
CJAC(12,9)

ct13)
CJAC(13,4)
CJAC(13,8)

C(14)

CJAC(14,4)
CJIAC(14,5)
CJAC(14,8)
CJAC(14,9)

C(1s)
CJAC(15,5)
CJAC(15,9)
RETURN

0D OF CONFUN

(X(1) = X($))ung ¢

THOR(X(1) - X(5))
THOR(X(T) - X(5))
THOR(X(6) - X(9))
THOR(X(6) - X(9))

X(2)wnu2 &  X(7)wnp

TWONX(2)
THOX(7)

(X(3) - X(2))un2 ¢

THO#(X(3) - X(2))
THOR(X(3) - X(2))
THORX(7)

(X(4) - X(2))wn2
THOR(X(&4) -~ X(2))
THOR(X(4) - X(2))
THOR(X(8) - X(7))
THOR(X(8) - X(7))

IX(2) - X(5))nng
THOR(X(2) ~ X(5))
THOR(X(2) - X(S))
THORXLT) - X(9))
THOR(X(7) - X(9))

NS )nup
THORX(3)

(X(&4) - X(3))un
THOR(X(4) - X(3))
THOR(X(4) - X(3))
THO*X(8)

(X(5) -~ X(3))mng +

THOHX(S) - X(3))
THOR(X(5) - X(3))
THOX(9)

X(4)ng ¢ X(8)unp

THORX(4)
THORX(8)

(X(4) - X(S))ung ¢

THOR(X(4) - X(5))
THO®(X(&) - X(S))
THOMX(9) - X(8))
THOR(X(9) - X(8))

X(S)ng ¢ X(9)unp

THORX(S)
THORX(9)

12. EXAMPLE PROGRAM AND OUTIPUT

(X(6) - X(9))un

X(7)ung

(X(8) - X(7))nng

(X(7) - X(9))ung

X(8)nng

X(9)nng

(X(9) - X(8))Innp

AN - S R
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. .

4

ROMS OF A.

1 -1.00 t.00 9.00 9.00 9.00 8.00 0.00 0.00 0.00
2 9.00 ~-1.00 1.00 0.00 0.00 0.00 9.00 0.00 0.00
3 0.00 0.00 1.00 -~1.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 1.00 -1.00 0.00 0.00 0.00 0.00

LONER BOUNDS.

0.000-01 -1.00D 10 -1.00D0 10 ~1.00D 10 0.000-01 0.000-01 0.000-01
~1.000 10 -1.00D 10 0.00D-01 0.00D-01 0.00D-01 0.00D-01 -1.00D 10
-1.00D 10 -1.00D 10 ~1.00D %0 -1.00D 10 ~1.00D 10 ~1.00D 10 -1.00D 10
=1.00D 10 -1.000 10 -1.00D 10 -1.00D 10 -1.00D 10 -1.00D 10 -1.00D 10

UPPER BOUNDS.
1.000 10 1.00D 10

1.00D 10 1.00D 10 1.00D 10 1.000 10 1.00D0 10
0.000-01 ©.000-01 1.000 10 1.00D 10 1.00D 10 1.00D 10 1.00D 00
1.000 00 1.00D0 60 1.000 00 1.00D 00 1.00D 00 1.00D 00 1.00D 00
1.00D 00 9.000 00 1.00D 00 1.00D 00 1.00D 00 1.00D 00 1.00D 00
INITIAL X.
0.33 0.67 1.10 0.67 0.33 0.33 0.67
-0.33 -0.67

NORKSPACE PROVIDED IS INC 50), W( 1000).
TO SOLVE PROBLEM WE NEED INC 18), MN¢ 800).

ITN 1ITQP STEP NMF OBJECTIVE BND LC NC NCOLZ NORM GFREE NORM ZT6 CONDH COND T NORM C RHO CONV U
o -~ 0.00-01 1 ~1.44000 00 ~- =-- - -- 2.050 00 - - == 9.360-01 . ==
1 8 4.00-0Y 3-1.4723000 0 o 5 4 2.080 00 9.770-02 1.6D 00 3.30 00 6.980-01 0.00-01 FFFF 1
2 8 1.00 00 4 ~-1.3623000 0 © o 5 2.000 00 1.67D-01 2.2D0 00 1.5D0 00 6.910-02 0.00-01 FFTF 1
3 1 1.00 00 5-1.397000 0 0 4 5 2.050 00 1.73D-01 6.90 00 1.40 00 4.570D-02 0.00-0% FFYF ¢
4 3 1.4D 00 7-1.3547000 ¢ ©0 6 3 2.09 00 1.280-01 6.90 00 3.00 00 1.110-01 0.00-01 FFYF O
5 1 1.00 00 8-1.35%0000 0 0 ¢ 3 2.06D0 00 3.210-02 S5.50 00 3.0D 00 1.69D-02 0.0D-01 FFTF 1
6 1 1.00 00 9-1.3498000 0 O 6 3 2.050 00 1.00D0-02 5.6D 00 3.00 00 2.370-04 0.0D-01 FFYF 1
7 f 1.0DC0O 10 -1.3499D 006 O 0 6 3 2.050 00 7.6%-03 7.50 00 3.0D0 00 1.290-04 0.00-01 FFTF 1
8 1 1.0000 11 -1.3500D000 O© O 6 3 2.050 00 6.06D-03 1.50 01 3.0D 00 2.430-04 0.00-01 FFVF 1
9 1 1.0D00 12 -1.3500D060 O O & 3 2.050 00 2.370-03 2.6D O 3.00 00 1.05D-04 0.0D-01 FFTF {

10 1 1.0000 13 -1.3500000 O 0O ¢ 3 2.050 00 4.150-04 3.0D 01 3.0D0 00 4.850-06 0.00-01 FFYF ¢
1" 1 1.0D000 14 -1.3500D00 O O 6 3 2.050 00 4.57D-05 2.4D Of 3.00 00 O.110-08 0.00-01 FFYF 1
12 1 1.0000 15-1.3500D00 0 O 6 3 2.050 00 7.40D-06 2.30 Ot 3.0D 00 3.170-09 0.00-01 FYVF 1
13 1 1.0000 16 -1.3500000 ©0 O 6 3 2.050 00 7.430-07 2.3D Ot 3.00 00 3.40D-11 0.0D-0t FYYF ¢
14 t 1.0DO0 17 ~1.3500D 00 © ©O & 3 2.05D 00 2.890-08 1.80 01 3.0D 00 6.07D-13 0.00-01 TUVF
15 1 1.000C 18 -1.3500000 O©0 O ¢ 3 2.050 00 1.51D0-09 1.4D 01 3.00 00 9.440-15 0.00-01 YTVT ¢

EXIT NP PHASE. INFORM = 0 NMAJITS = {5 NFEVAL = 18 NCEVAL = 18

VARIABLE STATE VALUE LOMER BOUND UPPER BOUND LAGR MULTIPLIER RESIOUAL

VarsL 19 FR  0.60946650-01 0.0000000 NONE 0.0000000 0.6095D-01

VARBL 2 FR  0.5976493 NONE NONE 9.0000000 0.10000 11
e VARBL 3 FR 1.000000 NONE NONE 9.0000000 0.1000D0 11
L VARBL & M 0.597¢493 NONE NONE 0.0000000 0.10000 11
VARBL S FR  0.60946650-01 0.0000000 NONE 0.0n00000 0.60950-01
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VARBL 6 O 0.343771S $.0000000 NONE 9.0000000 0.3438
VARBL 7 FR  0.5000000 9.9000000 NONE 0.0000000 0.5000
VARBL 8 R -0.5000000 NONE 0.0000000 0.0000000 0.5000
VARBL 9 FR ~-0.3437715 NONE 0.0000000 0.0000000 0.3438
LINEAR CONSTR  STATE VALUE LONER BOUND  UPPER BOUND LAGR MULTIPLIER  RESIDUAL
LNCON 1 FR  0.5367027 0.0000000 NONE 0.0000000 0.5367
INCON 2 FR  0.4023507 0.0000000 NONE 0.0000000 0.4024
LNCON 3 FR  0.4023507 0.0900000 NONE 0.9000000 0.4024
INCON & FR  0.5367026 0.0000000 NONE 0.0000000 0.5367
NONLMR CONSTR  STATE VALUE LONER BOUND  UPPER BOUND LAGR MULTIPLIER RESIDUAL
NLCON 1 FR  0.1218933 NONE 1.000000 0.0000000 0.8781
NLCON 2 FR  0.3124571 NONE 1.000000 0.0000000 0.6875
NLCON 3 UL 1.000000 NONE 1.000000 -0.8318406D-01 -0.42190~14
NLCON 4 UL 1.000000 NONE 1.000000 -0.3202625 -0.3997D-14
NLCON 5 FR  0.4727152 NONE 1.000000 0.0000000 0.5273
NLCON 6 FR  0.6071847 NONE 1.000000 0.0000000 0.3928
NLCON 7 FR  0.4113861 NONE 1.000000 0.0000000 0.5881
NLCON 8 UL 1.000000 NONE 1.000000 -0.1992983 -0.3997D-14
NLCON 9 UL 1.000000 NONE 1.000000 -0.3202625 -0.4441D~14
NLCON 10 UL 1.000000 NONE 1.000000 -0.3437715 0.0000
NLCON 11 FR  0.4118869 NONE 1.000000 0.0000000 0.5881
NLCON 12 UL 1.000000 NONE 1.000000 -0.8318406D-01 -0.4441D-14
NLCON 13 FR  0.6071847 NONE 1.000000 0.0000000 0.35268
NLCON 14 FR  0.3124571 NONE 1.000000 0.0000000 0.6875
NLCON 15 FR  0.1218933 NONE 1,000000 0.0000000 0.8781
EXIT NPSOL - OPTIMAL SOLUTION FOUND.
FINAL NONLINEAR OBJECTIVE VALUE =  ={,.349963
A RUN OF THE SAME EXAMPLE MITH A MARM START....
INITIAL X.
0.11 0.65 1.05 0.65 0.1 0.39 0.55
-0.45  -0.29
s NORKSPACE PROVIDED IS NG 500, MO 1000).
. TO SOLVE PROBLEM NE NEED IN(  18), WN(  800).
.
ITNITGP  STEP NI OBJECTIVE BND LC NC NCOLZ NORM GFREE NORM ZT6 CONDN COND T  NORM C RHO CONV U
0 -- 0.00-01 1 -1.3843000 == -- -- == 2,09 00 - - -  1.14D-0% - - -
1 1 2.2000 3-1.3148000 0 © 6 3 2.030 00 5.390-02 5.30 02 2.00 00 1.21D-01 0.00-01 FFYF §
2 1 1.0000 4-1.3517D000 0 O 6 3 2.06D 00 1.350-02 9.90 02 .90 00 5.070-03 0.00-01 FFTF 1§
3 1 1.0000 5-1.3499000 0 0 6 3 2.050 00 1.080-02 7.9D 0f 3.00 00 &.3570-05 0.00-01 FFTF 1
4 1 10000 6-1.3500000 0 0 6 3 2.050 00 4.390-03 7.80 01 3.0D 00 1.52D-05 0.00-01 FFTF 9
S 1 1.0000 7-5.3500000 0 O 6 3 2.050 00 1.14D-03 4.1D 01 3.00 00 2.12D-05 0.0D-01 FFYF 1
6 1 1.0000 &-1.350000 0 O 6 3 2.050 00 3.130-04 1.90 02 3.00 00 7.220-06 0.00-01 FFTF 1
7 % 1.0008 9-1.3500000 0 O 6 3 2.050 00 4.94D-05 5.20 02 3.00 00 3.190-07 0.0D-01 FFTF 1
- 8 1 10000 10-1.300000 © 0 & 3 2.050 00 2.800-06 7.4D 02 3.00 00 1.25D-09 0.0D-0% FYTF 1
. 9 1 1.0000 11-1.3560000 0 O 3 2.050 00 5.410-08 6.90 02 3.00 00 9.120-12 0.00-01 VTVE 1§
: 10 1 1.0000 12-1.350000 ¢ O 6 3 2.05 08 9.160-10 5.40 02 3.00 00 1.830-14 0.00-01 TTTV §
K EXIT NP PMASE. INFORM = & MAJITS = 10 NPEVAL = 12 NCEVAL = 12
EXIT NPSOL - OPTIMAL SOLUTION FOUND.
-y FINAL NONLINEAR OBJECTIVE VALUE = -1.349963
..-::'
.‘.:;
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